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Abstract

Purpose – The purpose of this paper is to present a computationally efficient model to solve
combined conduction/radiation heat transfer problems in absorbing, emitting, non-scattering, non-
gray materials.
Design/methodology/approach – The model is formulated for steady-state condition and based
on an iterative approach where the medium is discretized into finite strips and the extinction
spectrum is divided into finite bands to consider the extinction coefficient variation with the
wavelength.
Findings – Temperature fields and heat flux distributions are presented to demonstrate the
capability of the formulation. It is shown that the model is quite accurate and efficient even for the
cases of pure radiation. Differently from other models, the number of iterations required by the model
for convergence is very low, even in the cases dominated by radiation.
Originality/value – The model has great potential to contribute with the evaluation and design of
materials for thermal insulation, where radiation heat transfer can be the dominant mechanism, such
as aerogel materials which are recognized as the solids with the lowest thermal conductivity and are
intended to be used in building and construction, aerospace, transportation and other applications.
Keywords Numerical analysis, Thermal properties of materials, Heat transfer
Paper type Research paper

Nomenclature

C constant value

d thickness of a strip

D thickness of the sample

E exponential integral function

i spectral radiation intensity

K extinction coefficient

L total number of strips

M total number of spectrum bands

N conduction–radiation parameter

q heat flux

T temperature, coefficient of
temperature fields

x global Cartesian coordinate

x̄ local Cartesian coordinate

� generic number of a strip

� thermal conductivity

" boundary emissivity

� non-dimensional flux

� refractive index

� non-dimensional temperature
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� optical coordinate

� wavelenght

� cosine of radiation direction

	 Stefan–Boltzmann constant

 equation of the non-linear system

Subscript

b blackbody

c conduction

i, j,
 indices

m iterative step

n order of the exponential
integral function

r radiation

t total

Superscript

+ in forward direction

� in backward direction

* optical coodinate for
integration

0 directional spectral radiation
intensity

Introduction
Combined conduction and radiation heat transfer mechanisms are encountered in
many important practical applications, such as design of furnaces, manufacturing of
glass, fiber and foam insulations, studies of filler and cover for special windows and
solar collectors, and so on. Many interesting materials for these applications present
complex radiative behaviors which can be strongly dependent on the electromagnetic
spectrum, such as aerogels and other special foams. These materials are classified as
non-gray materials.

Several numerical and experimental studies exist for the analysis of heat transfer by
simultaneous conduction and radiation in gray materials; that is, materials with
extinction coefficient independent of wavelength. Theoretical models for heat transfer
involving radiation have been recognized as computationally expensive (Daurelle et al.,
1999; Marakis et al., 2001; Mishra et al., 2006). The difficulty and high processing cost
of radiation problems are due to the integro-differential nature of its governing
equations (Siegel and Howell, 2002). However, efforts have been directed to reduce the
processing time by developing new models and improving the computational efficiency
of the existing ones (Ratzell III and Howell, 1982; Manzari, 1998; Coelho and
Gonçalves,1999; Anteby et al., 2000; Mishra et al., 2004). A pioneer theoretical
formulation for this problem was presented by Viskanta and Grosh (1962a). These
authors obtained a rigorous solution for the case of one-dimensional gray medium
using a complex transformation of the integro-differential equation into a non-linear
integral equation which is solved by an iterative procedure. They also used their
formulation to investigate the effect of boundary emissivities on heat transfer in gray
medium (Viskanta and Grosh, 1962b). More recently, the discrete transfer method
(Shah, 1979) and the collapsed dimension method (Mishra and Prasad, 2002) address
the same problem. Comparisons of results obtained by these last methods are
presented in Talukdar and Mishra (2002). The results are in very good agreement with
those published by Viskanta and Grosh (1962a, b), but the number of iterations
required for radiation dominated problems are very large. According to the authors, an
under relaxation technique is required for convergence when the conduction–radiation
parameter is smaller or equal to 0.01.

A review in the literature shows that most of the published models are concerned
with heat transfer in gray medium. For the case of non-gray medium, it can be cited the
theoretical–experimental work by (Heinemann et al., 1996), in which a numerical model



Conduction-
radiation
problem

167

is used to describe combined conduction and radiation heat transfer in silica aerogels.
However, the information about the theoretical model presented in (Heinemann et al.,
1996) is insufficient to reproduce its results.

In the present work a model for the analysis of heat transfer by simultaneous
conduction and radiation mechanisms in one-dimensional planar non-gray medium is
presented. The main features of this model are its simplicity and fastness for
convergence. It is based on a finite strip theory and its basic idea already has been used
to solve linear mechanical and thermal conduction problem for heterogeneous
materials (Cavalcante et al., 2007). Here, the model consists of an iterative tangent non-
linear formulation in which the medium is discretized into finite strips and the
extinction spectrum is divided into finite bands. Inside each strip the temperature field
is approximated using quadratic expansions in local coordinates whose coefficients are
the primary unknowns of the problem. The discrete expressions of the model consist of
balance energy equations and continuity conditions of temperature and heat flux. For
verification, the model is applied to solve problems including gray and non-gray
participating media with different thermal and optical properties and temperature
conditions. In the examples, silica aerogels are selected as non-gray materials. Results
of temperature fields and conductive, radiative and total heat fluxes are presented and
the relative importance of the heat transfer modes can clearly be seen. Comparison of
results with others obtained by different theoretical models demonstrates the very good
performance of the formulation from accuracy and number of iterations for
convergence.

Theoretical formulation
The basic equations of the problem to be solved are described in this section. A planar
sample of a homogeneous, isotropic, non-gray material limited by two boundary
surfaces is shown in Figure 1. The material is absorbing, emitting, and non-scattering,
whereas the boundaries 1 and 2 are opaque and diffuse surfaces. The temperature
values on the boundaries 1 and 2 are denoted by T1 and T2, respectively. Heat transfer
inside the material occurs by conduction and radiation. The material properties are
independent of temperature.

Under steady-state condition, the total heat flux qt is constant through the thickness
D of the sample and given by

qt ¼ qcðxÞ þ qrðxÞ ð1Þ

Figure 1.
Absorbing-emitting

material between two
diffuse boundary surfaces
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where qcðxÞ and qrðxÞ indicate the values of the conductive and radiative fluxes,
respectively, occurring on the point with coordinate x (Figure 1). The conductive flux is
obtained by Fourier’s law

qcðxÞ ¼ ��c
dT

dx
ð2Þ

where T represents temperature and �c is the thermal conductivity of the material. The
radiative flux is defined by (Siegel and Howell, 2002) as

qrðxÞ ¼
ð1

0

dqr�ðxÞ ¼
ð1

0

@qr�ðxÞ
@�

d� ð3Þ

with qr� being the radiative flux corresponding to wavelength �.
Introducing the optical coordinate �� ¼ K�x, where K� is the material’s extinction

coefficient (which, for non-gray materials is a function of the radiation wavelength �),
the derivative in Equation (3) can be written as (Siegel and Howell, 2002)

@qr�

@�
¼ 2�iþ� ð0Þ

ð1

0

exp ���
�

� �
� d�� 2�i�� ð�D�Þ

�
ð1

0

exp ��D� � ��
�

� �
� d�

þ 2�

ð��
0

�2
�i0b� �

�
�

� �
E2 �� � ���
� �

d���

� 2�

ð�D�

��

�2
�i
0
b� �

�
�

� �
E2 �

�
� � ��

� �
d��� ð4Þ

In this equation, iþ� ð0Þ and i�� ð�D�Þ represent the forward and backward intensities
(both functions of wavelengths) at boundaries 1 and 2, respectively, �D� is the optical
thickness of the sample and �� is the material’s refractive index. Furthermore,
� ¼ cos �, with � the angle between the radiation direction and the x-axis (Figure 1).
The blackbody radiation intensity i0b� (also a function of �) depends on the temperature
and it is computed by Planck’s law

i0b� ¼
2C1

�5ðeC2=�T � 1Þ ð5Þ

where C1 and C2 are constants. The symbol E2ðÞ in Equation (4) is a particular case of
the integral

EnðÞ ¼
ð1

0

�n�2e�=� d� ð6Þ
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for n¼ 2. The intensities at the boundaries can be evaluated by the following
expressions

iþ� ð0Þ ¼ "�1n2
�i0b�;1 þ 2ð1� "�1Þ i�� ð�D�ÞE3ð�D�Þ

�
þ
ð�D�

o

n2
�i
0
b� �

�
�

� �
E2 �

�
�

� �
d���
�

ð7Þ

and

i�� ð�D�Þ ¼ "�2n
2
�i
0
b�;2 þ 2ð1� "�2Þ iþ� ð0ÞE3ð�D�Þ

�
þ
ð�D�

o

n2
�i
0
b�ð���ÞE2ð�D� � ���Þ d���

�
ð8Þ

where "�1 and "�2 are the emissivities of the boundary surfaces 1 and 2, respectively,
which are functions of wavelength �.

For conduction–radiation heat transfer, the energy conservation equation governing
the problem is given by

r � ð�crT � qrÞ ¼ 0 ð9Þ

which can be written in the form of an integro-differential equation as

�c
d2T

dx2
�
ð1

0

K�
@2qr�

@��@�
d� ¼ 0 ð10Þ

Using Equation (4), the following expression can be derived (Siegel and Howell, 2002)

@2qr�

@��d�
¼ �2�iþ� ð0Þ

ð1

0

exp ���
�

� �
d�� 2�i�� ð�D�Þ

ð1

0

exp ��D� � ��
�

� �
d�

� 2�

ð��
0

�2
�i
0
b�ð���ÞE1 �� � ���

� �
d��� � 2�

ð�D�

��

�2
�i0b� �

�
�

� �
E1 �

�
� � ��

� �
d���

þ 4��2
�i
0
b�ð��Þ ð11Þ

Numerical formulation
The problem to be solved is governed by the integro-differential Equation (10) with the
boundary conditions Tð0Þ ¼ T1 and TðDÞ ¼ T2. This is a non-linear and non-local
problem whose solution presents difficulties because the divergence of the radiative
heat flux in Equation (11) depends on the temperature field which is not known a
priory. The problem is non-local because the heat flux depends not only on the
temperature gradient at the point but also on the all temperature field.

In the present formulation, the integral of Equation (10) is approximated by a
summation. The total wavelength interval is divided into M small subintervals
½�j; �jþ1� with flexible widths ��j ¼ �jþ1 � �j, where 1 � j � M . Each subinterval j is
associated with single values of extinction coefficient K�j and refractive index n�j, as
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shown in Figure 2. Hence, the energy Equation (9) is written as

�c
d2T

dx2
�
XM
j¼1

K�j
@2qr�

@��d�

� �
j

��j ¼ 0 ð12Þ

To obtain discrete equations, the sample is divided into L strips with variable thickness
d� (1 � � � LÞ as shown in Figure 3. A local coordinate �xxð�Þ is attached to the strip’s
center, so that� d�

2 � �xxð�Þ � d�
2 .

The temperature field is approximated in each strip using a quadratic expansion in the
corresponding local coordinate. Then, for the��strip, the temperature field is given by

Tð�xxÞ ¼ Tð�Þo þ �xxT
ð�Þ
1 þ 1

2
3�xx2 � d2

�

4

� �
T
ð�Þ
2 ð13Þ

where T
ð�Þ
o , T

ð�Þ
1 and T

ð�Þ
2 are the unknown temperature coefficients of the ��strip. In

Equation (13), T
ð�Þ
o represents the mean temperature on the ��strip and �cT

ð�Þ
1 is the

conduction flux at the center of the ��strip. Using this approximated temperature
field, the divergence of the conductive flux can be written as

dqc

dx
¼ dqc

d�xx
¼ �3�cT

ð�Þ
2 ð14Þ

Figure 3.
(a) Material sample
divided into L strips and
(b) local coordinate
system for the ��strip

Figure 2.
Extinction spectrum
divided into M
wavelength subintervals
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Hence, using Equations (11) and (14), the energy Equation (9) written for the center
ð�xxð�Þ ¼ 0Þ of the ��strip can be given by the following expression

 � ¼ 3�cT
ð�Þ
2 þ 2�

XM
j¼1

K�j � ½iþ� ð0ÞE2ð�ð�Þc� Þ þ i�� ð�D�ÞE2ð�D� � �ð�Þc� Þ

þ �2
�j

X��1


¼1

ð�ð
Þ
2�

�
ð
Þ
1�

i0b�ð���ÞE1ð�ð�Þc� � ���Þ d��� þ �2
�j

ð�ð�Þ
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i0b�ð���ÞE1ð��� � �
ð�Þ
c� Þ d��� � 2�2

�ji
0
b�ð�

ð�Þ
c� Þ���j ¼ 0

ð15Þ

where �
ð�Þ
c� is the optical coordinate of the center of the strip. The derivatives of  �

with respect to the unknown temperature coefficients T
ð
Þ
o , T

ð
Þ
1 and T

ð
Þ
2 , associated

with the 
�strip, are given by

@ �

@T
ð
Þ
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¼ 2�
XM
j¼1

K�j

@iþ� ð0Þ
@T
ð
Þ
o
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ð16Þ

and

@ �
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Þ
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where ��
 stands for the Kronecker delta.
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Assuming narrow strips, the blackbody radiation intensities and their derivatives
appearing in Equations (16)-(18), can be approximately evaluated in terms of the mean
temperature values To on the strips. Using this simplification, the integrals over the
optical coordinate can be solved explicitly. Here, the integrals of the type En are
obtained by four-point Gaussian quadrature. The numerical model results in L energy
equations, one for each strip. These equations depend on the unknown temperature
coefficients.

Additional equations are given by the compatibility conditions of flux and
temperature on the ends of the strips, as follows:

Temperature compatibility at the interfaces between adjacent strips

Tð��1Þ �xx ¼ d��1

2

� �
¼ Tð�Þ �xx ¼ � d�

2

� �

Tð��1Þ
o þ d��1

2
T
ð��1Þ
1 þ d2

��1

4
T
ð��1Þ
2 ¼ Tð�Þo � d�

2
T
ð�Þ
1 þ d2

�

4
T
ð�Þ
2 ð19Þ

Conduction heat flux compatibility at the interfaces between adjacent strips

qð��1Þ
c �xx ¼ d��1

2

� �
¼ qð�Þc �xx ¼ � d�

2

� �

T
ð��1Þ
1 þ 3d��1

2
T
ð��1Þ
2 ¼ T

ð�Þ0
1 � 3d�

2
T
ð�Þ
2 ð20Þ

Temperature boundary conditions

Tð1Þo �
d1

2
T
ð1Þ
1 þ

d2
1

4
T
ð1Þ
2 ¼ T1

TðLÞo þ
dL

2
T
ðLÞ
1 þ

d2
L

4
T
ðLÞ
2 ¼ T2 ð21Þ

A non-linear system with 3L equations and 3L unknown temperature coefficients is
given by Equations (15), (19)-(21). An iterative solution is used to solve this problem. In
general, the equations of the non-linear system can be written as

 i
~TT
� 	

¼ 0ði ¼ 1; 2; . . . ; 3LÞ ð22Þ

where ~TT is the vector of temperature coefficients given by

~TT ¼ Tð1Þo T
ð1Þ
1 T

ð1Þ
2 Tð2Þo T

ð2Þ
1 T

ð2Þ
2 ; . . . ;TðLÞo T

ðLÞ
1 T

ðLÞ
2

n o
ð23Þ

Considering Taylor’s series expansion of  i on the vector ~TTm, corresponding to certain
iteration m and neglecting higher order terms, a linearization of the problem is
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represented as follows

 i
~TTmþ1

� 	
�  i

~TTm

� 	
þ @ i

@~TT

� �
~TT¼~TTm

� �~TTm ¼ 0 ð24Þ

where @ i

@~TT

� 	
represents the Jacobian matrix of the function  i and �~TTm indicates the

increment vector of temperature coefficients defined by

�~TTm ¼ ~TTmþ1 � ~TTm ð25Þ

Using Equations (24) and (25), the unknown temperature coefficients are obtained
iteratively, as follows

~TTmþ1 ¼ ~TTm �
@ i

@~TT

� ��1

~TT¼~TTm

�  i
~TTm

� 	
¼ 0 ð26Þ

The iterative process starts with an initial temperature field, calculated as the
conduction-only heat transfer problem. Convergence is achieved when the Euclidean
norm of the nth increment of the temperature field normalized by the temperature field
is less than a tolerance, usually set to 10�3. Convergence is extremely fast, even for non-
gray materials, when compared with previous algorithms, which were applied to gray
materials only. Gray materials present less difficulty because the wavelength
dependency is eliminated.

Verification for gray materials
The accuracy of the algorithm is demonstrated by comparing with results available in
the literature for gray materials. The conduction–radiation parameter is defined by
N ¼ �cK=4	T3

ref , where K is the extinction coefficient, Tref is a reference temperature
and 	 is the Stefan–Boltzmann constant (	 ¼ 5:6696� 10�8W=m2K4). Here, Tref has
been taken as the maximum temperature on the boundary (T1orT2Þ. For high values of
N, conduction is the dominating heat transfer mechanism, whereas for small values of
N, radiation dominates.

Figures 4(a) and (b) present non-dimensional temperature distributions
ð� ¼ T=T1Þ for optical thickness �D ¼ 1;T2=T1 ¼ 0:5 and different values of N and
boundary emissivities. In Figure 4(a), results for N ¼ 0:0; 0:01; 0:1; 10 and boundary
emissivity " ¼ 1:0 are compared with those obtained by (Talukdar and Mishra, 2002).
The curves shown in Figure 4(b) are temperature distributions obtained for N ¼ 0:001
and two values of boundary emissivities: " ¼ 1:0 and " ¼ 0:1.

A uniform discretization with 100 strips is used. The number of iterations required
for convergence varied between two and five, where the maximum value (n¼ 5) was
necessary for the case with pure radiation (N¼ 0). A tolerance of 0.001 is used. As it
can be seen in Figure 4(a), the results are in very good agreement with those published
in Talukdar and Mishra (2002). Note the very low number of iterations required by the
present model for the cases dominated by radiation. In Talukdar and Mishra (2002), for
example, the number of iterations for N¼ 0.1, 0.01, 0.001 and 0.0001 was
approximately 80, 120, 600 and 650, respectively, and under relaxation was necessary
in that study for N � 0:01.
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Non-dimensional temperature fields in gray materials with different boundary
emissivities and optical thicknesses,T1/T2¼ 0.5, and N¼ 0 are shown in Figure 5. To
verify the model in describing the heat transfer phenomena with only radiation, the
temperature fields are compared with those resulting of (Viskanta and Grosh, 1962b). As
it can be seen, the results are in good agreement and the largest difference corresponds to
about 2.6 per cent for �D ¼ 10. The maximum number of iteration was six and occurred

Figure 4.
Temperature distribution
for the gray sample with
�D¼ 1
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Figure 5.
Temperature along the
gray sample for N¼ 0

and different optical
thicknesses
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Figure 6.
Dimensionless heat fluxes
along the gray samples
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for the case �D ¼ 10. For these cases, a more refined discretization was used to improve
the heat flux results near the boundaries. Specifically, 50 strips uniformly distributed on
each one of the two 0.01�D sized regions close to the boundaries and 200 strips on the rest
of the sample width were used. For thick samples, a non-uniform discretization, refined
toward the boundaries, is preferred in order to capture the radiation heat transfer that is
stronger near the boundary. Oscillations of the calculated total flux can be used as an
indicator of the need for refinement near the boundaries.

Non-dimensional heat fluxes obtained by the present model for gray material with
optical thickness �D ¼ 10, T2=T1 ¼ 0:5 and different values of the conduction–
radiation parameter are shown in Figure 6. Again, the emissivities of both the
boundaries have been taken equal to "¼ 1.0 and " ¼ 0.1, respectively. In Figure 6, the
conductive, radiative and total non-dimensional fluxes are represented by �c; �r and �t ,
respectively. A non-dimensional flux is defined by the relation � ¼ q=ð	T4

ref Þ, where q
represents a real flux. A discretization with 200 strips is used, with 50 per cent of them
uniformly distributed over the two regions of length 0.05D near the boundaries. The
maximum number of iterations for convergence was five, for the case with only
radiation (N¼ 0). For N¼ 10, the model need only two iterations for convergence.
Again, a tolerance of 0.001 was used.

Numerical values of the non-dimensional total flux compared with those obtained
by Viskanta and Grosh (1962b) are presented in Tables I and II.

Application to non-gray materials
Silica aerogel is analyzed to demonstrate the model for non-gray material. Silica
aerogels are materials that exhibit extinction coefficients strongly dependent on the
electromagnetic wavelength (Heinemann et al., 1996). A sample of silica aerogel

Table I.
Values of non-

dimensional total heat
flux, "1¼ "2¼ 1.0

Non-dimensional total heat flux
�D T1/T2 N This study Viskantaa

0.1 0.5 0 0.858 0.859
0.01 1.079 1.074
0.1 2.876 2.88
1.0 20.846 20.88

10 200.540 200.88
1.0 0.1 0 0.559 0.556

0.01 0.631 0.658
0.1 0.968 0.991
1.0 4.192 4.218

10.0 36.546 36.6
1.0 0.5 0 0.519 0.518

0.01 0.567 0.596
0.1 0.769 0.798
1.0 2.570 2.60

10.0 20.54 20.60
10.0 0.5 0 0.109 0.102

0.01 0.113 0.114
0.1 0.133 0.131
1.0 0.315 0.315

10.0 2.111 2.114

Source: aViskanta and Grosh (1962b)
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0.0175 m thick with boundary temperatures T1¼ 293 K and T2¼ 303 K is analyzed.
The specific extinction spectrum of the material can be found in (Heinemann et al.,
1996). The refractive index is equal to 1.00, independent of the wavelength, which is
typical of silica aerogels. Six different values of thermal conductivities

Table II.
Values of non-
dimensional total heat
flux, "1¼ "2¼ 0.1

Non-dimensional total heat flux
�D T1/T2 N This study Viskantaa

0.1 0.5 0 0.0491 0.049
0.01 0.277 0.267
0.1 2.074 2.078
1.0 20.044 20.08

10.0 200.00 200.08

1.0 0.1 0 0.061 0.051
0.01 0.198 0.22
0.1 0.570 0.591
1.0 3.809 3.752

10.0 36.15 36.22

1.0 0.5 0 0.0476 0.047
0.01 0.157 0.156
0.1 0.402 0.393
1.0 2.219 2.245

10.0 20.19 20.25

10.0 0.5 0 0.036 0.036
0.01 0.0874 0.090
0.1 0.114 0.115
1.0 0.304 0.297

10.0 2.102 2.107

Source: aViskanta and Grosh (1962b)

Figure 7.
Temperature variation
along the aerogel sample
for different values of the
thermal conductivity
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Figure 8.
Heat fluxes along the

aerogel sample for
different thermal

conductivities
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�c ¼ 10�n W=ðm2KÞ are considered, with n¼ 1, 2, 3, 4, 5, 8. The emissivity of the
boundaries is 0.04. The sample was discretized into 200 strips, and the extinction
spectrum was divided into 54 bands with variable widths in the interval
1:4�m � � � 200�m.

Temperature distribution through the thickness of the sample as a function of the
relative position for the different thermal conductivity values are shown in Figure 7.
The conductive, radiative and total heat fluxes, corresponding to thermal
conductivities �c¼ 10�8, 10�4 and 10�1 W/(m2K), are shown in Figure 8. The number
of iterations required for convergence varied between two and five.

Conclusion
A novel numerical formulation for the analysis of conduction–radiation heat transfer
in one-dimensional planar absorbing, emitting, non-gray material is presented. The
accuracy of the model is demonstrated by comparing results for gray and non-gray
materials with prior results from the literature.

The computational efficiency of the formulation is verified for cases dominated by
radiation and thick samples, which are very challenging to the heat transfer
algorithms. The number of iterations required for convergence is low, even in cases
dominated by radiation.
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